An introduction of Scientific Computing

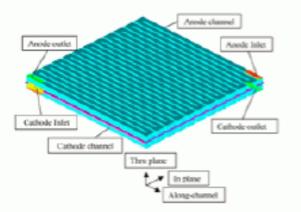
Institute of Mathematics Modelling and Scientific Computing National Chiao-Tung University

Chin-Tien Wu

Why scientific computing?

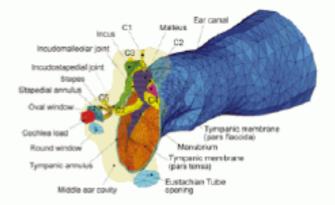
- Simulation of natural phenomena
- Virtual prototyping of engineering designs
- More insights from unknown phenomenon
- Much more

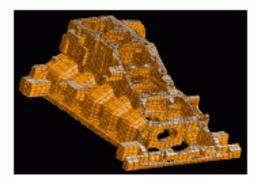
Large-scale Simulation of Polymer Electrolyte Fuel Cells by parallel Computing (Hua Meng and Chao-Yang Wang, 2004)

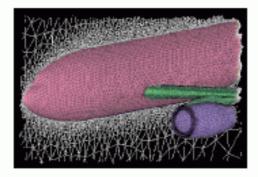


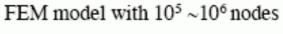
FEM model with O(106) nodes

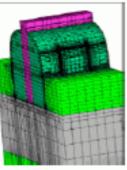
Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission (R. Z. Gan, B. Feng and Q. Sun, 2004)











Car engine with O(105) nodes Commercial Aircraft: 107 nodes FINFET transistor: 105 nodes

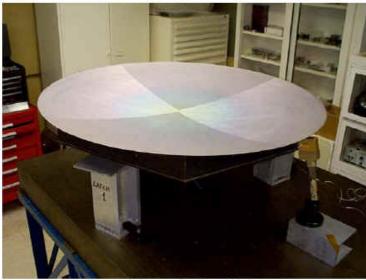


Figure 1 Composite Space Reflector

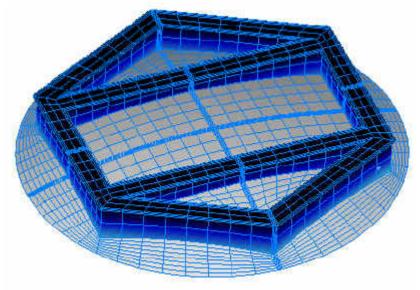


Figure 3 Finite Element Model for the Reflector

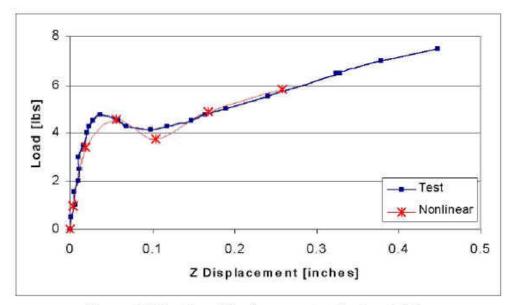


Figure 21 Load vs. Displacement at the Load Point

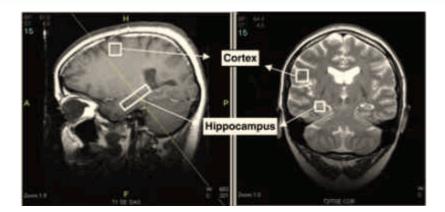
Mathematics makes magnetic resonance better

Science 318, 980 (2007)

Magnetic Resonance Spectroscopy Identifies Neural Progenitor Cells in the Live Human Brain

Louis N. Manganas,^{1,3} Xueying Zhang,¹ Yao Li,¹ Raphael D. Hazel,^{1,2} S. David Smith,² Mark E. Wagshul,¹ Fritz Henn,² Helene Benveniste,^{1,2} Petar M. Djurić,¹ Grigori Enikolopov,^{3*} Mirjana Maletić-Savatić^{1,3*}

In the paper, a mathematical method called the singular value decomposition (SVD) is used to decompose the signals so as to identify neural stem cells



1.28ppm

What is *scientific computing*?

Design and analysis of algorithms for numerically solving mathematical problems in science and engineering. Traditionally called *numerical analysis*

Distinguishing features of *scientific* computing

Approximate *continuous* quantities by discrete quantities. Considers effects of approximations including error and sensitivity What should be cared in scientific computing?

- Problem is well-posed if solution
 - exists
 - is unique
 - depends continuously on problem data

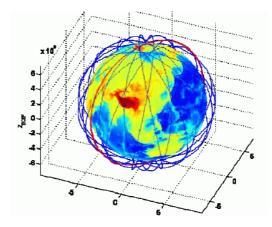
Otherwise, problem is *ill-posed*

- Even if problem is well posed, solution may still be sensitive to input data
- Computational algorithm should not make sensitivity worse

Sources of approximation

- Before computation
 - modeling
 - empirical measurements
 - previous computations
- During computation
 - truncation or discretization
 - rounding
- Uncertainty in input may be amplified by problem
- Perturbations during computation may be amplified by algorithm

Example 1



- Computing surface area of Earth using formula $A = 4\pi r^2$ involves several approximations
 - Earth is modeled as sphere, idealizing its true shape
 - Value for radius is based on empirical measurements and previous computations
 - Value for π requires truncating infinite process
 - Values for input data and results of arithmetic operations are rounded in computer

Error measurement

- Absolute error: approximate value true value
- Relative error: absolute error

- Equivalently, approx value = (true value) \times (1 + rel error)
- True value usually unknown, so we estimate or bound error rather than compute it exactly
- Relative error often taken relative to approximate value, rather than (unknown) true value

Where numerical errors come from?

- Truncation error: difference between true result (for actual input) and result produced by given algorithm using exact arithmetic
 - Due to approximations such as truncating infinite series or terminating iterative sequence before convergence
- Rounding error: difference between result produced by given algorithm using exact arithmetic and result produced by same algorithm using limited precision arithmetic
 - Due to inexact representation of real numbers and arithmetic operations upon them

More about error (I)

- Typical problem: compute value of function $f: \mathbb{R} \to \mathbb{R}$ for given argument
 - x = true value of input
 - f(x) = desired result
 - $\hat{x} = approximate$ (inexact) input
 - $\hat{f} = approximate$ function actually computed
- Total error: $\hat{f}(\hat{x}) f(x) =$

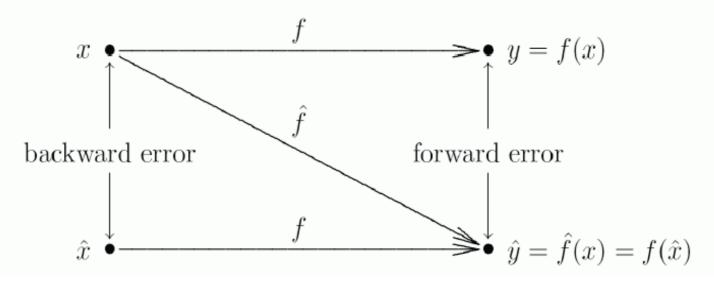
$$\hat{f}(\hat{x}) - f(\hat{x}) + f(\hat{x}) - f(x)$$

computational error + propagated data error

Algorithm has no effect on propagated data error

More about the error (II)

- Suppose we want to compute y = f(x), where $f : \mathbb{R} \to \mathbb{R}$, but obtain approximate value \hat{y}
- Forward error: $\Delta y = \hat{y} y$
- **Backward error**: $\Delta x = \hat{x} x$, where $f(\hat{x}) = \hat{y}$



Condition number of a function f at variable value x is defined as:

$$cond_{x}(f) = \sup_{\hat{x}} \frac{\left| f(\hat{x}) - f(x) \right| / |f(x)|}{|\hat{x} - x| / |x|}$$

Relative propogated error (rounding error) can be estimated by:

$$\left|f\left(\hat{x}\right)-f\left(x\right)\right|\left|f\left(x\right)\right| \leq cond_{x}(f) \cdot \left|\hat{x}-x\right|\left|x\right|$$

relative input error

Relative computational error (truncation error) can be estimated by:

$$\left| \hat{f}(\hat{x}) - f(\hat{x}) \right| / |f(x)| = \left| \hat{f}(\hat{x}) - \hat{f}(\tilde{x}) \right| / |f(x)|$$

$$\leq \operatorname{cond}_{x}(\hat{f}) \cdot \frac{\left| \hat{f}(\hat{x}) \right|}{|f(x)|} \cdot \underbrace{\left| \tilde{x} - \hat{x} \right| / |\hat{x}|}_{\text{relative backward error}}$$

Evaluate the forward error, backward error and the condition number:

Evaluate function *f* for approximate input $\hat{x} = x + \Delta x$ instead of the true input *x*, we have

Absolute forward error =
$$\left| f(x + \Delta x) - f(x) \right| \approx \left| f'(x) \right| |\Delta x|$$

Relative forward error = $\frac{\left| f(x + \Delta x) - f(x) \right|}{\left| f(x) \right|} \approx \left| \frac{f'(x)}{f(x)} \right| |\Delta x|$
Condition number = $\sup_{\Delta x} \frac{\left| f(x + \Delta x) - f(x) \right| / \left| f(x) \right|}{\left| \Delta x \right| / \left| x \right|} \approx \left| \frac{f'(x)}{f(x)} \right| |x|$

In what condition the backward error can be controlled?

Consider:
$$\|\hat{f}(x) - f(x)\| = \|f(\tilde{x}) - f(x)\|$$

$$= \|f'(x)(\tilde{x} - x) + \frac{1}{2}f''(\bar{x})(\tilde{x} - x)^2\|$$

$$\Rightarrow \|\hat{f}(x) - f(x)\| \approx \|f(x)\| \|cond(f)\| \cdot \frac{\|\tilde{x} - x\|}{\|x\|} \text{ when } \tilde{x} \sim x.$$
Clearly, when $\begin{cases} cond(f) < \infty \\ \|f(x)\| < \infty \end{cases}, \quad \hat{f} \to f \Leftrightarrow \frac{\|\tilde{x} - x\|}{\|x\|} \to 0 \\ \|f(x)\| < \infty \end{cases}$

Moreover, the backward error can be estimated by

Relative backward
$$\approx \frac{\text{Relative forward error}}{\text{Condition number}}$$

A problem f is said to be well-posed if or well-conditioned if $cond_x(f) << \infty \text{ for all } x$

An algorithm \hat{f} is said to be well-posed if or well-conditioned if

$$cond_x(\hat{f}) \ll \infty$$
 for all x

Relative error in the solution (output) is insensitive to the relative small change in the input.

A problem f or an algorithm $\hat{f}\,$ is said to be stable if the relative backward error is small

Accurate numerical solution can be obtained only when a problem and computational algorithm are well-conditioned and stable

example2

• Approximating cosine function f(x) = cos(x) by truncating Taylor series after two terms gives

$$\hat{y} = \hat{f}(x) = 1 - x^2/2$$

Forward error is given by

$$\Delta y = \hat{y} - y = \hat{f}(x) - f(x) = 1 - \frac{x^2}{2} - \cos(x)$$

- To determine backward error, need value \hat{x} such that $f(\hat{x}) = \hat{f}(x)$
- For cosine function, $\hat{x} = \arccos(\hat{f}(x)) = \arccos(\hat{y})$

• For x = 1,

$$y = f(1) = \cos(1) \approx 0.5403$$

$$\hat{y} = \hat{f}(1) = 1 - \frac{1^2}{2} = 0.5$$

$$\hat{x} = \arccos(\hat{y}) = \arccos(0.5) \approx 1.0472$$

- Forward error: $\Delta y = \hat{y} y \approx 0.5 0.5403 = -0.0403$
- Backward error: $\Delta x = \hat{x} x \approx 1.0472 1 = 0.0472$

example3

• Tangent function is sensitive for arguments near $\pi/2$

- $\tan(1.57079) \approx 1.58058 \times 10^5$
- $\tan(1.57078) \approx 6.12490 \times 10^4$
- Relative change in output is quarter million times greater than relative change in input

• For x = 1.57079, cond $\approx 2.48275 \times 10^5$

The reason is as following:

$$cond_{\frac{\pi}{2}-\varepsilon}(\tan) \approx \left|\frac{\pi}{2}-\varepsilon\right| \left|\sec^{2}\left(\frac{\pi}{2}-\varepsilon\right)\right| / \left|\tan\left(\frac{\pi}{2}-\varepsilon\right)\right| \approx \left|\frac{\pi}{2}-\varepsilon\right| / \varepsilon$$

Example 4

Consider approximating $f(x) = e^{-x^2}$ by $\hat{f}(x) = 1 - x^2$ For $x = \sqrt{1 - \varepsilon}$, we have $\hat{f}(x) = \varepsilon = f(\hat{x})$, this implies $\hat{x} = \sqrt{-\ln(\varepsilon)}$. Clearly, the backward error at x=1 is $\lim_{\varepsilon \to 0} \frac{\left|\sqrt{1 - \varepsilon} - \sqrt{-\ln(\varepsilon)}\right|}{\left|\sqrt{1 - \varepsilon}\right|} = \infty$

The approximation \hat{f} to f is unstable near x=1.

Exercise: Estimate the backward error by the formula given at p.11. Could you explain why the estimation is nothing close to the real error?